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Lane–Emden equation is a nonlinear singular equation in the astrophysics that corresponds
to the polytropic models. In this paper, a pseudospectral technique is proposed to solve the
Lane–Emden type equations on a semi-infinite domain. The method is based on rational
Legendre functions and Gauss–Radau integration. The method reduces solving the nonlin-
ear ordinary differential equation to solve a system of nonlinear algebraic equations. The
comparison of the results with the other numerical methods shows the efficiency and accu-
racy of this method.
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1. Introduction

Many science and engineering problems arise in unbounded domains. Different spectral methods have been proposed for
solving problems on unbounded domains. The most common method is the use of polynomials that are orthogonal over un-
bounded domains, such as the Hermite spectral method and the Laguerre method [1–7].

Guo [8–10] proposed a method by mapping the original problem in an unbounded domain to a problem in a bounded
domain and then using suitable Jacobi polynomials to approximate the resulting problems.

Another approach is replacing an infinite domain with ½�L; L� and a semi-infinite interval with ½0; L� by choosing L, suffi-
ciently large. This method is named as domain truncation [11].

Another effective direct approach for solving such problems is based on rational approximations. Christov [12] and Boyd
[13,14] developed some spectral methods on unbounded intervals by using mutually orthogonal systems of rational func-
tions. Boyd [14] defined a new spectral basis, named rational Chebyshev functions on the semi-infinite interval, by mapping
them to the Chebyshev polynomials. Guo et al. [15] introduced a new set of rational Legendre functions which are mutually
. All rights reserved.
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orthogonal in L2ð0;þ1Þ. They applied a spectral scheme using the rational Legendre functions for solving the Korteweg-de
Vries equation on the half line. Boyd et al. [16] applied pseudospectral methods on a semi-infinite interval and compared
rational Chebyshev, Laguerre and mapped Fourier sine. Authors of [17] developed two pseudospectral methods based on
Fourier series and rational Chebyshev function to solve the Nagumo equation.

Authors of [18–20] applied the spectral method to solve nonlinear ordinary differential equations on semi-infinite inter-
vals. Their approach was based on rational Tau method. They obtained the operational matrices of derivative and product of
rational Chebyshev and Legendre functions and then applied these matrices together with the Tau method [21–23] to reduce
the solution of these problems to the solution of a system of algebraic equations.

In this paper, a pseudospectral technique based on rational Legendre functions is applied to solve nonlinear differential
equations, i.e. Lane–Emden and white-dwarf on semi-infinite domain.

Many problems in mathematical physics and astrophysics which occur on semi-infinite interval, are related to the diffu-
sion of heat perpendicular to the parallel planes and can be modeled by the heat equation
x�k d
dx

xk dy
dx

� �
þ f ðxÞgðyÞ ¼ hðxÞ; x > 0; k > 0; ð1Þ
or equivalently
y00 þ k
x

y0 þ f ðxÞgðyÞ ¼ hðxÞ; x > 0; k > 0; ð2Þ
where y is the temperature. For the steady-state case and for k ¼ 2;hðxÞ ¼ 0, this equation is the generalized Emden–Fowler
equation [24–26] given by
y00 þ 2
x

y0 þ f ðxÞgðyÞ ¼ 0; x > 0; ð3Þ
subject to the conditions
yð0Þ ¼ a; y0ð0Þ ¼ b; ð4Þ
where f ðxÞ and gðyÞ are given functions of x and y, respectively.
When f ðxÞ ¼ 1, Eq. (3) reduces to the Lane–Emden equation which, with specified gðyÞ, was used to model several phe-

nomena in mathematical physics and astrophysics such as the theory of stellar structure, the thermal behavior of a spherical
cloud of gas, isothermal gas sphere and theory of thermionic currents.

Several authors have investigated this equation.
Bender et al. [27] proposed a perturbative technique for solving nonlinear differential equations such as Lane–Emden. It

consists of replacing nonlinear terms in the Lagrangian such as yn by y1þd and then treating d as a small parameter.
Shawagfeh [28] applied a nonperturbative approximate analytical solution for the Lane–Emden equation using the Ado-

mian decomposition method. His solution was in the form of a power series. He used Padé approximation method [29] to
accelerate the convergence of the power series.

Mandelzweig and Tabakin [30] used the quasilinearization approach to solve Lane–Emden equation. This method approx-
imates the solution of a nonlinear differential equation by treating the nonlinear terms as a perturbation about the linear
ones, and unlike the perturbation theories is not based on the existence of some kind of small parameters.

Wazwaz [31] employed the Adomian decomposition method [32] with an alternate framework designed to overcome the
difficulty of the singular point. It was applied to the differential equations of Lane–Emden type. Further he used [33] the
modified decomposition method for solving analytic treatment of nonlinear differential equations such as Lane–Emden
equation. The modified method accelerates the rapid convergence of the series solution, dramatically reduces the size of
work and provides the solution by using few iterations only without any need to the so-called Adomian polynomials.

Liao [34] provided an analytic algorithm for Lane–Emden type equations. This algorithm logically contains the well-
known Adomian decomposition method. Different from all other analytical techniques, this algorithm itself provides us with
a convenient way to adjust convergence regions even without Padé technique.

By the semi-inverse method, He [35] obtained a variational principle for the Lane–Emden equation, which gives much
numerical convenience when applying finite element methods or Ritz method.

Parand and Razzaghi [20] presented a numerical technique based on a rational Legendre Tau method to solve higher or-
dinary differential equations such as Lane–Emden. In their work, the operational matrices of the derivative and product of
rational Legendre functions together with the Tau method were utilized to reduce the solution of these physical problems to
the solution of systems of algebraic equations.

Ramos [36–38] solved Lane–Emden equation through different methods. He presented linearization methods for singular
initial value problems in second order ordinary differential equations such as Lane–Emden. These methods result in linear
constant-coefficients ordinary differential equations which can be integrated analytically, thus they yield piecewise analyt-
ical solutions and globally smooth solutions [36]. Later, he developed piecewise-adaptive decomposition methods for the
solution of nonlinear ordinary differential equations. Piecewise-decomposition methods provide series solutions in intervals
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which are subject to continuity conditions at the end points of each interval and their adaption is based on the use of either a
fixed number of approximants and a variable step size, a variable number of approximants and a fixed step size or a variable
number of approximants and a variable step size [37]. In [38], series solutions of the Lane–Emden equation based on either a
Volterra integral equation formulation or the expansion of the dependent variable in the original ordinary differential equa-
tion are presented and compared with series solutions obtained by means of integral or differential equations based on a
transformation of the dependent variables.

Yousefi [39] used integral operator and converted Lane–Emden equations to integral equations and then applied Legendre
wavelet approximations. In his work properties of Legendre wavelet together with the Gaussian integration method were
utilized to reduce the integral equations to the solution of algebraic equations. By his method, the equation was formulated
on [0,1].

Chowdhury and Hashim [40] obtained analytical solutions of the generalized Emden–Fowler type equations in the second
order ordinary differential equations by homotopy-perturbation method (HPM). This method is a coupling of the perturba-
tion method and the homotopy method. The main feature of the HPM [41] is that it deforms a difficult problem into a set of
problems which are easier to solve. HPM yields solutions in convergent series forms with easily computable terms.

Aslanov [42] constructed a recurrence relation for the components of the approximate solution and investigated the con-
vergence conditions for the Emden–Fowler type of equations. He improved the previous results on the convergence radius of
the series solution.

Dehghan and Shakeri [43] investigated Lane–Emden equation using the variational iteration method and showed the effi-
ciency and applicability of their procedure for solving this equation. Their technique does not require any discretization, lin-
earization or small perturbations and therefore reduces the volume of computations.

Bataineh et al. [44] obtained analytical solutions of singular initial value problems (IVPs) of the Emden–Fowler type by
the homotopy analysis method (HAM). Their solutions contained an auxiliary parameter which provided a convenient
way of controlling the convergence region of the series solutions. It was shown that the solutions obtained by the Adomian
decomposition method (ADM) and the homotopy-perturbation method (HPM) are only special cases of the HAM solutions.

As one more step in this direction, we use rational Legendre pseudospectral approach to solve Lane–Emden and white-
dwarf equations which are nonlinear singular differential equations on semi-infinite interval. The main point of our analysis
lies in the fact that there is no reconstruction of the problem on the finite domain. We show that our results have good agree-
ment with exact results, which demonstrate the viability of the new technique. In this sense, this method has the potential to
provide a wider applicability. On the other hand, the comparison of the results obtained by this method and the others shows
that the new method provides more accurate solutions than those obtained by other methods.

The organization of the paper is as follows:
In Section 2, we explain the formulation of rational Legendre functions required for our subsequent development. In Sec-

tion 3, after a short introduction to the essentials of Lane–Emden equation, we summarize the application of rational Legen-
dre pseudospectral method for solving Lane–Emden and white-dwarf equations. Then, a comparison is made with the
existing methods in the literature. Section 4 is devoted to conclusions.

2. Rational Legendre interpolation

In this section, at first, we introduce rational Legendre functions and express some of their basic properties. More, we
approximate a function using Gauss–Radau integration and rational Legendre-Gauss–Radau points.

2.1. Rational Legendre functions

The well-known Legendre polynomials are orthogonal in the interval [�1,1] with respect to the weight function qðyÞ ¼ 1
and can be determined with the help of the following recurrence formula:
P0ðyÞ ¼ 1; P1ðyÞ ¼ y;

Pnþ1ðyÞ ¼
2nþ 1
nþ 1

� �
yPnðyÞ �

n
nþ 1

� �
Pn�1ðyÞ; n P 1:

ð5Þ
The new basis functions, denoted by RnðxÞ, are defined as follows:
RnðxÞ ¼ Pn
x� L
xþ L

� �
; ð6Þ
where the constant parameter L sets the length scale of the mapping. Boyd [45] offered guidelines for optimizing the map
parameter L for rational Chebyshev functions, which is useful for rational Legendre functions, too.

RnðxÞ is the nth eigenfunction of the singular Sturm–Liouville problem
ðxþ LÞ2

L
ðxR0nðxÞÞ

0 þ nðnþ 1ÞRnðxÞ ¼ 0; x 2 ½0;1Þ; n ¼ 0;1;2; . . . ð7Þ
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and by Eq. (5) satisfies in the following recurrence relation:
R0ðxÞ ¼ 1; R1ðxÞ ¼
x� L
xþ L

;

Rnþ1ðxÞ ¼
2nþ 1
nþ 1

� �
x� L
xþ L

� �
RnðxÞ �

n
nþ 1

� �
Rn�1ðxÞ; n P 1:

ð8Þ
2.2. Function approximation

Let wðxÞ ¼ 2L
ðxþLÞ2

denotes a non-negative, integrable, real-valued function over the interval K ¼ ½0;1Þ. We define
L2
wðKÞ ¼ fv : K! R j v is measurable and kvkw <1g; ð9Þ
where
kvkw ¼
Z 1

0
jvðxÞj2wðxÞdx

� �1
2

; ð10Þ
is the norm induced by the inner product of the space L2
wðKÞ,
hu;viw ¼
Z 1

0
uðxÞvðxÞwðxÞdx: ð11Þ
Thus fRnðxÞgnP0 denotes a system which is mutually orthogonal under (11), i.e.,
hRn;Rmiw ¼
2

2nþ 1
dnm; ð12Þ
where dnm is the Kronecker delta function. This system is complete in L2
wðKÞ. For any function u 2 L2

wðKÞ the following expan-
sion holds
uðxÞ ¼
Xþ1
k¼0

akRkðxÞ; ð13Þ
with
ak ¼
hu;Rkiw
kRkk2

w

: ð14Þ
The aks are the discrete expansion coefficients associated with the family fRkðxÞg.

2.3. Rational Legendre interpolation approximation

Canuto et al. [46] and Gottlieb et al. [47] introduced Gauss–Radau integration. Further, Guo et al. [15] introduced rational
Legendre-Gauss–Radau points. Let
RN ¼ spanfR0;R1; . . . ;RNg; ð15Þ
and yj; j ¼ 0;1; . . . ;N, be the N þ 1 roots of the polynomial PNþ1ðxÞ þ PNðxÞ. These points are known as Legendre-Gauss–Ra-
dau points. We define
xj ¼ L
1þ yj

1� yj
; j ¼ 0;1; . . . ;N; ð16Þ
which is named as rational Legendre-Gauss–Radau nodes. In fact, these points are zeros of the function RNþ1ðxÞ þ RNðxÞ. Using
Gauss–Radau integration we have:
Z 1

0
uðxÞwðxÞdx ¼

Z 1

�1
u L

1þ y
1� y

� �
qðyÞdy ¼

XN

j¼0

uðxjÞwj 8u 2 R2N ; ð17Þ
where
w0 ¼
2

ðN þ 1Þ2
; wj ¼

2L

ðN þ 1Þ2ðxj þ LÞ½RNðxjÞ�2
; j ¼ 1; . . . ;N; ð18Þ
are the corresponding weights with the N þ 1 rational Legendre-Gauss–Radau nodes.
The interpolating function of a smooth function u on a semi-infinite interval is denoted by PNu. It is an element of RN and

is defined as
PNuðxÞ ¼
XN

k¼0

akRkðxÞ: ð19Þ
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PNu is the orthogonal projection of u upon RN with respect to the inner product (11) and the norm (10). Thus by the orthog-
onality of rational Legendre functions we have [15]
hPNu� u;Riiw ¼ 0 8Ri 2 RN : ð20Þ
To obtain the order of convergence of rational Legendre approximation, at first we define the space
Hr
w;AðKÞ ¼ fv : v is measurable and kvkr;w;A <1g; ð21Þ
where the norm is induced by
kvkr;w;A ¼
Xr

k¼0

ðxþ 1Þ
r
2þk dk

dxk
v

�����
�����

2

w

0
@

1
A

1
2

; ð22Þ
and A is the Sturm–Liouville operator as follows:
AvðxÞ ¼ �w�1ðxÞ d
dx

x
d
dx

vðxÞ
� �

: ð23Þ
We have the following theorem for the convergence:

Theorem 1. For any v 2 Hr
w;AðKÞ and r P 0,
kPNv � vkw 6 cN�rkvkr;w;A: ð24Þ
A complete proof of the theorem and discussion on convergence are given in [15].

To apply a pseudospectral approach, we consider the residual ResðxÞwhen the expansion is substituted into the governing
equation. It requires that ak’s be selected so that the boundary conditions are satisfied, but make the residual zero at as many
(suitable chosen) spatial points as possible.

3. Numerical results

In this section, we apply the pseudospectral approach to find solutions of Lane–Emden and white-dwarf equations. At the
first step, by (19), let PNy be the approximation of y. Thus, our goal is to find the coefficients ak;0 6 k 6 N.

3.1. Lane–Emden equation

Inserting f ðxÞ ¼ 1 and gðyÞ ¼ ym into (3), we have the standard Lane–Emden equation that corresponds to the polytropic
models:
y00 þ 2
x

y0 þ ym ¼ 0; x > 0: ð25Þ
This equation is one of the basic equations in the theory of stellar structure and has been the focus of many studies [27–44].
This equation describes the temperature variation of a spherical gas cloud under the mutual attraction of its molecules and
subject to the laws of classical thermodynamics. It also describes the variation of density as a function of the radial distance
for a polytrope. It was first studied by the astrophysicists Jonathan Homer Lane and Robert Emden, which considered the
thermal behavior of a spherical cloud of gas acting under the mutual attraction of its molecules and subject to the classical
laws of thermodynamics [24,25].

The polytropic theory of stars essentially follows out of thermodynamic considerations, that deal with the issue of energy
transport, through the transfer of material between different levels of the star.

The boundary conditions are as follows:
yð0Þ ¼ 1; y0ð0Þ ¼ 0: ð26Þ
Physically interesting values of m lie in the interval ½0;5�. Exact solutions for Eq. (25) are known only for the values m ¼ 0;1
and 5. For other values of m the Lane–Emden equation is to be integrated numerically. Here, we solved it for m ¼ 2;3 and 4
by pseudospectral method. Let
ResðxÞ ¼ d2PNy

dx2 þ
2
x

dPNy
dx
þ Pm

N y; ð27Þ
be the residual function of the Lane–Emden equation. PNy is a good approximation of function y if it is zero on the whole
domain. In other words, we should select coefficients aks so that the residual function approaches zero on the most of the
domain. The pseudospectral scheme for Lane–Emden equation is to find PNy 2 RN such that
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ResðxjÞ ¼ 0; j ¼ 1; . . . ;N � 1; ð28Þ
PNyðx0Þ ¼ 1; ð29Þ
dPNy

dx

����
x¼x0

¼ 0; ð30Þ
where the xjs are rational Legendre-Gauss–Radau nodes. This generates a set of N þ 1 nonlinear equations that can be solved
by Newton method for the unknown coefficients aks. In the way that we used the rational Legendre-Gauss–Radau nodes in
the equations of finding aks, we overcame the singularity behavior at origin.

The first zero of y gives the radius of the star, so y must be computed up to this zero. The gross properties of the star such
as, mass, central pressure, binding energy, etc. can be computed through their relations to y. The approximations of the first
zero of y obtained by this method and perturbative technique [27] with exact numerical value [48] for m ¼ 2;3 and 4 are
listed in Table 1. Compared to the results with exact values, our solution is more accurate.
ison the first zero of y obtained by present method, perturbation method [27] and exact numerical values [48].

N Present method Padé approximation Exact value

25 4.35284254 4.3603 4.35287460
50 4.35286679
75 4.35287108

25 6.89678621 7.0521 6.89684862
50 6.89683601
75 6.89684862

25 14.9713392 17.967 14.9715463
50 14.9714787
75 14.9715463

ison of yðxÞ, between present method and exact values given by Horedt [48], for m ¼ 3.

Present method Exact value

0 1.0000000000 1.0000000000
0 0.9983350080 0.9983358000
0 0.9598341198 0.9598391000
0 0.8550456225 0.8550576000
0 0.1108089973 0.1108198000
0 0.0436802368 0.0437379800
0 0.0041551522 0.0041677890
6 0.0000358815 0.0000360112

g. 1. Lane–Emden graph obtained by present method ðN ¼ 75Þ for m ¼ 2 (dashed line), m ¼ 3 (dashed-dotted line) and m ¼ 4 (dotted line).



Table 3
Values ak of the coefficients of the rational Legendre functions of the Lane–Emden equation for m ¼ 2ða0 ¼ 9:9536559038e� 1Þ.

k ak k ak k ak k ak k ak

1 �1.3729259001 e�02 16 �6.4945053612 e�02 31 �2.2118596970 e�02 46 5.7473527939 e�03 61 6.3260778427 e�03
2 �2.2363046916 e�02 17 �6.3314059959 e�02 32 �1.9230968288 e�02 47 6.4280815690 e�03 62 5.9122162291 e�03
3 �3.0359563381 e�02 18 �6.1317910929 e�02 33 �1.6467958609 e�02 48 6.9854378897 e�03 63 5.4776814390 e�03
4 �3.7617692117 e�02 19 �5.9007830150 e�02 34 �1.3840554407 e�02 49 7.4267714818 e�03 64 5.0271448752 e�03
5 �4.4078412722 e�02 20 �5.6433317661 e�02 35 �1.1357105639 e�02 50 7.7590336726 e�03 65 4.5657830057 e�03
6 �4.9712512111 e�02 21 �5.3641317111 e�02 36 �9.0243541767 e�03 51 7.9899584843 e�03 66 4.0976307360 e�03
7 �5.4512873241 e�02 22 �5.0676465461 e�02 37 �6.8466881998 e�03 52 8.1267025123 e�03 67 3.6272584033 e�03
8 �5.8489375396 e�02 23 �4.7580355662 e�02 38 �4.8272250346 e�03 53 8.1770924703 e�03 68 3.1580782541 e�03
9 �6.1664806018 e�02 24 �4.4391966214 e�02 39 �2.9670135199 e�03 54 8.1482281386 e�03 69 2.6940768147 e�03

10 �6.4072027898 e�02 25 �4.1146984231 e�02 40 �1.2661648073 e�03 55 8.0477954726 e�03 70 2.2380730777 e�03
11 �6.5751314874 e�02 26 �3.7878383679 e�02 41 2.7700287680 e�04 56 7.8826315689 e�03 71 1.7935049037 e�03
12 �6.6748624253 e�02 27 �3.4615780971 e�02 42 1.6647902495 e�03 57 7.6601021464 e�03 72 1.3626376281 e�03
13 �6.7113673778 e�02 28 �3.1386136871 e�02 43 2.9010338535 e�03 58 7.3866272287 e�03 73 9.4840326562 e�04
14 �6.6898886040 e�02 29 �2.8213122108 e�02 44 3.9898922579 e�03 59 7.0691216053 e�03 74 5.5255837049 e�04
15 �6.6157914630 e�02 30 �2.5117922637 e�02 45 4.9368273289 e�03 60 6.7134797684 e�03 75 1.7757494126 e�04

Fig. 2. Absolute values jakj of the coefficients of the rational Legendre functions of the Lane–Emden equation for m ¼ 2.

Table 4
Values ak of the coefficients of the rational Legendre functions of the Lane–Emden equation for m ¼ 3ða0 ¼ 9:3728978977e� 1Þ.

k ak k ak k ak k ak k ak

1 �1.6654612769 e�01 16 1.9238113159 e�02 31 �1.7385385708 e�02 46 �1.9644954922 e�02 61 �3.8760499120 e�03
2 �2.2218571378 e�01 17 1.4573098359 e�02 32 �1.8907569519 e�02 47 �1.8552490801 e�02 62 �3.2492976271 e�03
3 �2.3060889906 e�01 18 1.0417898982 e�02 33 �2.0262517297 e�02 48 �1.7401547612 e�02 63 �2.6940593067 e�03
4 �2.0576045898 e�01 19 6.8691591664 e�03 34 �2.1426054086 e�02 49 �1.6211087370 e�02 64 �2.2075857947 e�03
5 �1.6270952150 e�01 20 3.8889376341 e�03 35 �2.2380801924 e�02 50 �1.4998943435 e�02 65 �1.7863766111 e�03
6 �1.1389032398 e�01 21 1.3683056114 e�03 36 �2.3116072739 e�02 51 �1.3781799112 e�02 66 �1.4260735601 e�03
7 �6.7925437663 e�02 22 �8.2527060898 e�04 37 �2.3627597456 e�02 52 �1.2574823022 e�02 67 �1.1218546644 e�03
8 �2.9747593374 e�02 23 �2.8167455828 e�03 38 �2.3916722092 e�02 53 �1.1391737496 e�02 68 �8.6831514475 e�04
9 �1.3180582498 e�03 24 �4.7058461906 e�03 39 �2.3989762605 e�02 54 �1.0244525085 e�02 69 �6.5986018423 e�04

10 1.7474484703 e�02 25 �6.5601053043 e�03 40 �2.3857034345 e�02 55 �9.1435801572 e�03 70 �4.9056578736 e�04
11 2.7968581113 e�02 26 �8.4149470156 e�03 41 �2.3532205021 e�02 56 �8.0974788687 e�03 71 �3.5456430874 e�04
12 3.2050660043 e�02 27 �1.0278311026 e�02 42 �2.3031396817 e�02 57 �7.1132047501 e�03 72 �2.4588060084 e�04
13 3.1675219015 e�02 28 �1.2137147330 e�02 43 �2.2372674263 e�02 58 �6.1959712857 e�03 73 �1.5880721930 e�04
14 2.8572058962 e�02 29 �1.3964558530 e�02 44 �2.1575283249 e�02 59 �5.3495091342 e�03 74 �8.7714243647 e�05
15 2.4104798894 e�02 30 �1.5726137376 e�02 45 �2.0659291365 e�02 60 �4.5759277553 e�03 75 �2.7413862076 e�05
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Fig. 3. Absolute values jakj of the coefficients of the rational Legendre functions of the Lane–Emden equation for m ¼ 3.

Table 5
Values ak of the coefficients of the rational Legendre functions of the Lane–Emden equation for m ¼ 4ða0 ¼ 9:8939043482e � 1Þ.

k ak k ak k ak k ak k ak

1 �3.0763080674 e�02 16 �3.7596562617 e�02 31 3.8094844466 e�03 46 1.7517841402 e�04 61 �2.2514321634 e�04
2 �4.8223199109 e�02 17 �3.1437532589 e�02 32 3.8185231099 e�03 47 3.8343200566 e�05 62 �2.0164583024 e�04
3 �6.2265759568 e�02 18 �2.5737469630 e�02 33 3.7064636669 e�03 48 �7.2889778446 e�05 63 �1.7866400589 e�04
4 �7.2744235511 e�02 19 �2.0557627114 e�02 34 3.5036088063 e�03 49 �1.6074265159 e�04 64 �1.5660762174 e�04
5 �7.9792808836 e�02 20 �1.5931995757 e�02 35 3.2362329542 e�03 50 �2.2762628605 e�04 65 �1.3578126978 e�04
6 �8.3708382606 e�02 21 �1.1871882952 e�02 36 2.9267125122 e�03 51 �2.7605134157 e�04 66 �1.1636603066 e�04
7 �8.4877997463 e�02 22 �8.3702419233 e�03 37 2.5937085380 e�03 52 �3.0850747661 e�04 67 �9.8472250140 e�05
8 �8.3730221711 e�02 23 �5.4056930803 e�03 38 2.2524539084 e�03 53 �3.2741956094 e�04 68 �8.2118392515 e�05
9 �8.0701686571 e�02 24 �2.9461259198 e�03 39 1.9150426806 e�03 54 �3.3506490197 e�04 69 �6.7282669864 e�05

10 �7.6214127251 e�02 25 �9.5189548136 e�04 40 1.5907853794 e�03 55 �3.3356471489 e�04 70 �5.3878255570 e�05
11 �7.0659120601 e�02 26 6.2144913908 e�04 41 1.2865303895 e�03 56 �3.2482948575 e�04 71 �4.1803381700 e�05
12 �6.4388572856 e�02 27 1.8208439596 e�03 42 1.0070260654 e�03 57 �3.1057612807 e�04 72 �3.0912796493 e�05
13 �5.7709567124 e�02 28 2.6938322980 e�03 43 7.5522515012 e�04 58 �2.9229244395 e�04 73 �2.1066422023 e�05
14 �5.0882460931 e�02 29 3.2870423263 e�03 44 5.3261579606 e�04 59 �2.7127161525 e�04 74 �1.2097301337 e�05
15 �4.4121404005 e�02 30 3.6450441188 e�03 45 3.3948089920 e�04 60 �2.4858819681 e�04 75 �3.8591663085 e�06
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Horedt [48] has given exact numerical values of y for some optional x. In Table 2 these values are compared with our re-
sults for m ¼ 3 and N ¼ 75. It shows that our results are highly accurate. The resulting graph of Lane–Emden equation for
N ¼ 75 and m ¼ 2;3 and 4 is shown in Fig. 1.

Table 3 and Fig. 2 represent the coefficients of the rational Legendre functions obtained by the present method for N ¼ 75
and m ¼ 2 of the Lane–Emden equation. Table 4, Fig. 3, Table 5 and Fig. 4 give the same information for m ¼ 3 and m ¼ 4.
These tables and figures show that the method has an appropriate convergence rate.

3.2. White-dwarf equation

Inserting f ðxÞ ¼ 1 and gðyÞ ¼ ðy2 � CÞ
3
2 into (3) gives the white-dwarf equation
y00 þ 2
x

y0 þ ðy2 � CÞ
3
2 ¼ 0; x > 0; ð31Þ
which was introduced by [24] in his study of the gravitational potential of the degenerate white dwarf stars. The boundary
conditions of this equation are the same as the Lane–Emden boundary conditions in (26) and it has singularity at origin, too.
It is interesting to point out that setting C ¼ 0 reduces the white-dwarf equation to Lane–Emden equation of index m ¼ 3.



Fig. 5. White-dwarf graph obtained by present method ðN ¼ 7Þ for C ¼ 0:2 (dashed line), C ¼ 0:4 (dashed-dotted line), C ¼ 0:6 (dotted line), C ¼ 0:8
(spaced-dotted line) and C ¼ 1:0 (solid line).

Fig. 4. Absolute values jakj of the coefficients of the rational Legendre functions of the Lane–Emden equation for m ¼ 4.
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Solving this Eq. (31) is the same as solving the Lane–Emden equation. Let
ResðxÞ ¼ d2PNy

dx2 þ
2
x

dPNy
dx
þ ðPNy2 � CÞ

3
2: ð32Þ
So we should find function PNy that satisfies
ResðxjÞ ¼ 0; j ¼ 1; . . . ;N � 1; ð33Þ
PNyðx0Þ ¼ 1; ð34Þ
dPNy

dx

����
x¼x0

¼ 0: ð35Þ
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This function can be determined by its coefficients aks. These coefficients can be found by solving the set of N þ 1 nonlinear
equations in (33)–(35).

Here, we solved this equation for C ¼ 0:2;0:4;0:6;0:8 and 1.0. The graph of white-dwarf equation for N ¼ 7 and L ¼ 0:35 is
shown in Fig. 5. The answer for C ¼ 0:2 is
P7yðxÞ ¼ 0:98573� 0:05409
x� 0:35
xþ 0:35

� �
� 0:10352

x� 0:35
xþ 0:35

� �2

� 0:17107
x� 0:35
xþ 0:35

� �3

� 0:26409
x� 0:35
xþ 0:35

� �4

� 0:28808
x� 0:35
xþ 0:35

� �5

� 0:17526
x� 0:35
xþ 0:35

� �6

� 0:04390
x� 0:35
xþ 0:35

� �7

: ð36Þ
4. Conclusion

In the above discussion, we applied the pseudospectral approach to solve nonlinear initial value problems, i.e. Lane–Em-
den and white-dwarf. Lane–Emden equation occurs in the theory of stellar structure and describes the temperature variation
of a spherical gas cloud. The white-dwarf equation appears in the gravitational potential of the degenerate white dwarf stars.
The difficulty in this type of equations, due to the existence of singular point at x ¼ 0, is overcomed here. In the Lane–Emden
equation, the first zero of y is an important point of the function, so we have computed y to this zero. In this paper, this equa-
tion is solved for m ¼ 2;3 and 4, which does not have exact solutions. White-dwarf equation is solved for C ¼ 0:2;0:4;0:6;0:8
and 1.0. The validity of the method is based on the assumption that it converges by increasing the number of collocation
points. Our aim was to apply an accurate and well-conditioned method that give more accurate answers without reformu-
lating the equation to bounded domains. Numerical results indicate the convergence and effectiveness of the present
approach.
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